Inverse Functions

Section 1.8

Objectives

– Verify inverse functions
– Use the horizontal line test to determine if a function is a one-to-one function.
– Find the inverse of a function.
– Given a graph, graph the inverse.
– Find the inverse of a function & graph both functions simultaneously.

What is an inverse function?

• A function that "undoes" the original function.

• A function "wraps an x" and the inverse would "unwrap the x" resulting in x when the 2 functions are composed on each other.

\[f(f^{-1}(x)) = f^{-1}(f(x)) = x \]

Example

Given that \(f(x) = 7x - 2 \), use composition of functions to show that \(f^{-1}(x) = \frac{x + 2}{7} \).

Do all functions have inverses?

• Yes, and no. Yes, they all will have inverses, BUT we are only interested in the inverses if they ARE A FUNCTION.

• DO ALL FUNCTIONS HAVE INVERSES THAT ARE FUNCTIONS? NO.

• Recall, functions must pass the vertical line test when graphed. If the inverse is to pass the vertical line test, the original function must pass the HORIZONTAL line test (be one-to-one!)

One-to-One Functions

A function \(f(x) \) is a one-to-one function if x-values do not share the same y-values.

Remember that a function will have different x-values.
A one-to-one function will have different x-values and different y-values.
Why are one-to-one functions important?

One-to-One Functions have Inverse functions

Horizontal Line Test

- Use to determine whether a function is one-to-one.
- A function is one-to-one if and only if no horizontal line intersects its graph more than once.

Horizontal-Line Test

Graph \(f(x) = -3x + 4 \).

Example: From the graph at the left, determine whether the function is one-to-one and thus has an inverse that is a function.

Horizontal-Line Test

Graph \(f(x) = x^2 - 2 \).

Example: From the graph at the left, determine whether the function is one-to-one and thus has an inverse that is a function.

How do you find an inverse?

- "Undo" the function.
- Replace the \(x \) with \(y \) and solve for \(y \).

How to find the Inverse of a One-to-One Function

1. Replace \(f(x) \) with \(y \) in the equation.
2. Interchange \(x \) and \(y \) in the equation.
3. Solve this equation for \(y \).
4. Replace \(y \) with \(f^{-1}(x) \).

Any restrictions on \(x \) or \(y \) should be considered and included with the equation.

Remember: Domain and Range are interchanged for inverses.
Example
Determine whether the function \(f(x) = 3x - 2 \) is one-to-one, and if it is, find a formula for \(f^{-1}(x) \).

Graph of Inverse f⁻¹ function
• The graph of \(f^{-1} \) is obtained by reflecting the graph of \(f \) across the line \(y = x \).

Properties of One-to-One Functions and Inverses
• If a function is one-to-one, then its inverse is a function.
• The domain of a one-to-one function \(f \) is the range of the inverse \(f^{-1} \).
• The range of a one-to-one function \(f \) is the domain of the inverse \(f^{-1} \).
• A function that is increasing over its domain or is decreasing over its domain is a one-to-one function.

Solution
<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x) = 3x - 2)</th>
<th>(f^{-1}(x) = \frac{x+2}{3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-5</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

Example
Graph \(f(x) = 3x - 2 \) and \(f^{-1}(x) = \frac{x+2}{3} \) using the same set of axes.
Then compare the two graphs.
Determine the domain and range of the function and its inverse.

Example
Graph \(y = \frac{1}{3}x + 2 \) and its inverse \(3(x-2) \).
Every point on the graph \((x,y) \) exists on the inverse as \((y,x) \) (i.e., if \((-6,0)\) is on the graph, \((0,-6)\) is on its inverse.

How do their graphs compare?
• The graph of a function and its inverse always mirror each other through the line \(y=x \).
Restricting a Domain

- When the inverse of a function is *not* a function, the domain of the function can be restricted to allow the inverse to be a function.
- In such cases, it is convenient to consider "part" of the function by restricting the domain of $f(x)$. If the domain is restricted, then its inverse is a function.

Restricting the Domain

Recall that if a function is not one-to-one, then its inverse will not be a function.

If we restrict the domain values of $f(x)$ to those greater than or equal to zero, we see that $f(x)$ is now one-to-one and its inverse is now a function.