MTH 112
EXPONENTIALS AND LOGARITHMS

Expressions
- Exponential \(f(x) = ab^x \)
 - \(b > 1 \) = growth, \(0 < b < 1 \) = decay
- Logarithms \(\log_b N = P \)
 - \(B = \) base, \(N = \# \), \(P = \) power
- Common Log = base 10; \(\log \)
- Natural Log = base \(e \); \(\ln \)

Equations
- Exponential \(f(x) = ab^x \)
 - Take log of both sides.
- Logarithms \(\log_b N = P \)
 - Write in exponential form.
 - Use properties while solving and simplify.

Properties
- Product prop. \(\log_b xy = \log_b x + \log_b y \)
- Quotient property \(\log_b (x/y) = \log_b x - \log_b y \)
- Power property \(\log_b N^x = x \log_b N \)
- Change of Base \(\log_b x = \frac{\log x}{\log b} \)
- \(\log_a a^x = x \)
- \(a^{\log_a x} = x \)
- \(\ln e^x = x \)
- \(e^{\ln x} = x \)
- \(a^x = a^y \iff x = y \)

Graphs
- Exponential \(y = ab^x \)
 - Asymptote = x-axis, \(y = 0 \)
 - y-intercept = (0,1)
- Logarithms \(\log_b N = P \)
 - Asymptote = y-axis, \(x = 0 \)
 - x-intercept = (1,0)

For both graphs, relate to parent function and label intercepts.