Inverse Functions

Objectives
- Verify inverse functions
- Find the inverse of a function.
- Use the horizontal line test to determine one-to-one.
- Given a graph, graph the inverse.
- Find the inverse of a function & graph both functions simultaneously.

What is an inverse function?
- A function that “undoes” the _______ function.
- A function “wraps an x” and the inverse would “unwrap the x” resulting in x when the 2 functions are composed on each other.
- The domain of f is equal to the _______ of f^{-1} and vice versa.

$$f(f^{-1}(x)) = f^{-1}(f(x)) = x$$

How do their graphs compare?
- The graph of a function and its inverse always _______ each other through the line $y = x$.
- Example: $y = \frac{1}{3}x + 2$ and its inverse $= 3(x - 2)$
- Every point on the graph (x,y) exists on the inverse as (y,x) (i.e. if (-6,0) is on the graph, (0,-6) is on its inverse.

Example 1
- Show that each function is the inverse of the other.
(Verify by showing $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.)
- $f(x) = 4x - 7$ and $g(x) = \frac{x + 7}{4}$

How do you find an inverse?
1. Replace $f(x)$ with y.
2. Interchange (__________) the x and the y in the equation.
3. Solve for _______.
4. If f has an inverse, replace y in step 3 with $f^{-1}(x)$.
5. Verify.
Example 3

- Find the inverse of \(f(x) = 2x + 7 \).

Example 4

- Find the inverse of \(f(x) = 4x^3 - 1 \).

Example 5

Find the inverse of \(f(x) = \frac{3}{x} - 1 \).

Do all functions have inverses?

- Yes, and no. Yes, they all will have inverses, BUT we are only interested in the inverses if they ARE A __________.

DO ALL FUNCTIONS HAVE INVERSES THAT ARE FUNCTIONS? NO.

- Recall, functions must pass the vertical line test when graphed. If the inverse is to pass the vertical line test, the original function must pass the __________ line test (be one-to-one)!

Horizontal Line Test

- If a horizontal line intersects a graph in only one point, then the function is one-to-one and has an inverse that is a function.

Graphing the Inverse

- Remember: The inverse of a function is a reflection about the line \(y = x \).
- To graph, simply swap each \(x \) & \(y \).
Example 6

- The graph of function f consists of two line segments, one segment from (-2, -2) to (-1, 0) and a second segment from (-1, 0) to (1,3). Graph f and use the graph to draw the graph of its inverse function.