Markov Processes

Regular Stochastic Matrices

A stochastic matrix is said to be regular if some power has all positive entries.

Example: Regular Stochastic Matrix

Which of the following stochastic matrices are regular?

a) \[
\begin{bmatrix}
.6 & .2 \\
.4 & .8
\end{bmatrix}
\]
b) \[
\begin{bmatrix}
0 & .5 \\
1 & .5
\end{bmatrix}
\]
c) \[
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\]

Stable Matrix and Distribution

If a stochastic matrix \(A \) has the properties that

1. as \(n \) gets large, \(A^n \) approaches a fixed matrix, and
2. any initial distribution approaches a fixed distribution for large \(n \), then

the fixed matrix is called the stable matrix of \(A \) and the fixed distribution is called the stable distribution of \(A \).

Example: Stable Matrix and Distribution

In Jordan, 25% of the women currently work. The effect of maternal influence of mothers on their daughters is given by the matrix

\[
A = \begin{bmatrix}
.6 & .2 \\
.4 & .8
\end{bmatrix}
\]

Find the stable matrix and the stable distribution of \(A \).

Example: Stable Matrix and Distribution (2)

\[
A^2 = \begin{bmatrix}
.44 & .56 \\
.32 & .68
\end{bmatrix},
A^3 = \begin{bmatrix}
.32 & .68 \\
.32 & .68
\end{bmatrix}
\]

It appears that the powers are approaching

\[
\begin{bmatrix}
\frac{1}{3} & \frac{1}{3} \\
\frac{2}{3} & \frac{2}{3}
\end{bmatrix}
\]

which is the stable matrix.
Example: Stable Matrix and Distribution (3)

- For the initial distribution, \(\begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{25}{2} \\ \frac{1}{2} & \frac{1}{2} & 25 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \end{bmatrix} \)

- However, for any initial distribution, \(\begin{bmatrix} \frac{1}{3} & \frac{1}{3} & p \\ \frac{1}{2} & \frac{1}{2} & 1-p \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \end{bmatrix} \)
 which is the stable distribution.

Properties of Regular Stochastic Matrix

- Let \(A \) be a regular stochastic matrix.
 1. The powers \(A^n \) approach a certain matrix as \(n \) gets large. This limiting matrix is called the stable matrix of \(A \).
 2. For any initial distribution \(A^n x_0 \) approaches a certain distribution. This limiting distribution is called the stable distribution of \(A \).
 3. All columns of the stable matrix are the same; they equal the stable distribution.
 4. The stable distribution \(X = \ldots \) can be determined by solving the system of linear equations

\[
\begin{align*}
\text{sum of the entries of } X &= 1 \\
AX &= X.
\end{align*}
\]

Example: Properties Regular Matrices

- Use the properties of a regular stochastic matrix to find the stable matrix and stable distribution of \(A = \begin{bmatrix} 0.7 & 0.2 \\ 0.6 & 0.8 \end{bmatrix} \).

Example

A marketing analysis shows that 12% of the consumers who do not currently drink KickKola will purchase KickKola the next time they buy a cola and that 63% of the consumers who currently drink KickKola will purchase it the next time they buy a cola.

Make a long-range prediction of KickKola’s ultimate market share, assuming that current trends continue.