Probability & Statistics

Frequency & Probability Distributions

Our Goals

- Describe a given set of data in terms that allow for interpretation and comparison.
- Interpret data collected in a meaningful way and make decisions based on those interpretations.

The mathematical tools that allow us to do this belong to the branch of mathematics called statistics.

Statistics

- Statistics is the branch of mathematics that deals with data: their collection, description, analysis, and use in prediction.
- Data can be presented in raw form or organized and displayed in tables or charts.

Frequency Table

A table like the one below is called a frequency table since it presents the frequency with which each response occurs.

<table>
<thead>
<tr>
<th>Highest Degree Planned</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor's</td>
<td>68,600</td>
<td>23.7</td>
</tr>
<tr>
<td>Master's</td>
<td>118,675</td>
<td>41.0</td>
</tr>
<tr>
<td>Doctorate</td>
<td>50,365</td>
<td>17.4</td>
</tr>
<tr>
<td>Medical</td>
<td>26,919</td>
<td>9.3</td>
</tr>
<tr>
<td>Law</td>
<td>14,183</td>
<td>4.9</td>
</tr>
<tr>
<td>Other</td>
<td>10,710</td>
<td>3.7</td>
</tr>
<tr>
<td>Total</td>
<td>289,452</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Example: Frequency Table & Histogram

The grades for the first quiz in a class of 25 students are

8 7 6 10 5 10 7 1 8 0 7 0 8 10 5 9 3 8 6 10 4 9 10 9 5

(a) Organize the data into a frequency table.
(b) Create a histogram for the data.

Histogram

- When the data is numeric data, then it can be represented by a histogram which is similar to a bar chart but there is no space between the bars.
- Vertical axis: represents frequency, proportion, or probability
- Horizontal axis: represents numeric data
Frequency Distribution & Relative Frequency Distribution

- A table that includes every possible value of a statistical variable with its number of occurrences is called a *frequency distribution*.
- If instead of recording the number of occurrences, the proportion of occurrences are recorded, the table is called a *relative frequency distribution*.

Example

- The number of cars waiting to be served at a gas station was counted at the beginning of every minute during the morning rush hour and the frequency tabulated in the table at right.
- Determine the relative frequency distribution associated with this data and draw the histogram.

<table>
<thead>
<tr>
<th>Number of Cars Waiting</th>
<th>Number of Occurrences</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Probability Distributions

- Generally, frequency distributions and relative frequency distributions are created from actual experiments where collections of sample data were obtained by actually recording the outcomes of experiments.
- Probability distributions are theoretical models of experiments.

Histogram of a Probability Distribution

- The histogram for a probability distribution is constructed in the same way as the histogram for a relative frequency distribution. Each outcome is represented on the number line, and above each outcome we erect a rectangle of width 1 and of height equal to the probability corresponding to that outcome.
Probability of an Event in Histogram

In a histogram of a probability distribution, the probability of an event \(E \) is the sum of the areas of the rectangles corresponding to the outcomes in \(E \).

Example

- Construct the probability distribution for the experiment in which a coin is tossed five times and the number of occurrences of heads is recorded.
- Construct the histogram for this probability distribution.
- Shade the histogram to represent the probability of the event “at least 3 heads”.

Random Variable

Consider a theoretical experiment with numerical outcomes. Denote the outcome of the experiment by the letter \(X \).

Since the values of \(X \) are determined by the unpredictable random outcomes of the experiment, \(X \) is called a random variable.

The probability distribution of \(X \) is a table listing the various values of \(X \) and their associated probabilities \(p_i \) with \(p_1 + p_2 + \ldots + p_r = 1 \).

Example

- Construct the probability distribution for the experiment in which a coin is tossed five times and the number of occurrences of heads is recorded.
- Construct the histogram for this probability distribution.
- Shade the histogram to represent the probability of the event “at least 3 heads”.

Example

- Consider a child’s toy box that contains 5 red cars and 2 blue cars. A sample of three cars is chosen at random from the toy box. Let \(X \) denote the number of blue cars in the sample. Find the probability distribution of \(X \).