Area of a Region Between Two Curves

With a few modifications, you can extend the application of definite integrals from the area of a region under a curve to the area of a region between two curves.

Consider two functions f and g that are continuous on the interval $[a, b]$.

Figure 7.1
Area of a Region Between Two Curves

If, as in Figure 7.1, the graphs of both f and g lie above the x-axis, and the graph of g lies below the graph of f, you can geometrically interpret the area of the region between the graphs as the area of the region under the graph of g subtracted from the area of the region under the graph of f, as shown in Figure 7.2.

$$\int_a^b [f(x) - g(x)] \, dx = \int_a^b f(x) \, dx - \int_a^b g(x) \, dx$$

Figure 7.2

Area of a Region Between Two Curves

To verify the reasonableness of the result shown in Figure 7.2, you can partition the interval $[a, b]$ into n subintervals, each of width Δx.

Then, as shown in Figure 7.3, sketch a representative rectangle of width Δx and height $f(x_i) - g(x_i)$, where x_i is in the ith subinterval.

Figure 7.3
Area of a Region Between Two Curves

The area of this representative rectangle is
\[\Delta A_i = (\text{height})(\text{width}) = [f(x_i) - g(x_i)]\Delta x. \]

By adding the areas of the \(n \) rectangles and taking the limit as \(||\Delta|| \to 0 \) \((n \to \infty) \), you obtain
\[
\lim_{n \to \infty} \sum_{i=1}^{n} [f(x_i) - g(x_i)]\Delta x.
\]

Because \(f \) and \(g \) are continuous on \([a, b]\), \(f - g \) is also continuous on \([a, b]\) and the limit exists. So, the area of the given region is
\[
\text{Area} = \lim_{n \to \infty} \sum_{i=1}^{n} [f(x_i) - g(x_i)]\Delta x
= \int_{a}^{b} [f(x) - g(x)]\,dx.
\]

Area of a Region Between Two Curves

If \(f \) and \(g \) are continuous on \([a, b]\) and \(g(x) \leq f(x) \) for all \(x \) in \([a, b]\), then the area of the region bounded by the graphs of \(f \) and \(g \) and the vertical lines \(x = a \) and \(x = b \) is
\[
A = \int_{a}^{b} [f(x) - g(x)]\,dx.
\]
Area of a Region Between Two Curves

In Figure 7.1, the graphs of f and g are shown above the x-axis. This, however, is not necessary.

The same integrand $[f(x) - g(x)]$ can be used as long as f and g are continuous and $g(x) \leq f(x)$ for all x in the interval $[a, b]$.

![Figure 7.1 Region between two curves](image)

This is summarized graphically in Figure 7.4.

Notice in Figure 7.4 that the height of a representative rectangle is $f(x) - g(x)$ regardless of the relative position of the x-axis.

![Figure 7.4 Region between two curves](image)
Area of a Region Between Two Curves

Representative rectangles are used throughout this chapter in various applications of integration.

A vertical rectangle (of width Δx) implies integration with respect to x, whereas a horizontal rectangle (of width Δy) implies integration with respect to y.

Example 1 – Finding the Area of a Region Between Two Curves

Find the area of the region bounded by the graphs of $f(x) = x^2 + 2$, $g(x) = -x$, $x = 0$, and $x = 1$.

Solution:
Let $g(x) = -x$ and $f(x) = x^2 + 2$.

Then $g(x) \leq f(x)$ for all x in $[0, 1]$, as shown in Figure 7.5.
Example 1 – Solution

So, the area of the representative rectangle is

\[\Delta A = [f(x) - g(x)] \Delta x \]

\[= [(x^2 + 2) - (-x)] \Delta x \]

and the area of the region is

\[A = \int_a^b [f(x) - g(x)] \, dx = \int_0^1 [(x^2 + 2) - (-x)] \, dx \]

\[= \left[\frac{x^3}{3} + \frac{x^2}{2} + 2x \right]_0^1 \]

\[= \frac{1}{3} + \frac{1}{2} + 2 \]

\[= \frac{17}{6}. \]

Area of a Region Between Intersecting Curves
Area of a Region Between Intersecting Curves

In Example 1, the graphs of \(f(x) = x^2 + 2 \) and \(g(x) = -x \) do not intersect, and the values of \(a \) and \(b \) are given explicitly.

A more common problem involves the area of a region bounded by two *intersecting* graphs, where the values of \(a \) and \(b \) must be calculated.

Example 2 – A Region Lying Between Two Intersecting Graphs

Find the area of the region bounded by the graphs of \(f(x) = 2 - x^2 \) and \(g(x) = x \).

Solution:

In Figure 7.6, notice that the graphs of \(f \) and \(g \) have two points of intersection.
Example 2 – Solution

To find the x-coordinates of these points, set $f(x)$ and $g(x)$ equal to each other and solve for x.

\[
\begin{align*}
2 - x^2 &= x & \text{Set } f(x) \text{ equal to } g(x). \\
-x^2 - x + 2 &= 0 & \text{Write in general form.} \\
-(x + 2)(x - 1) &= 0 & \text{Factor.} \\
x &= -2 \text{ or } 1 & \text{Solve for } x.
\end{align*}
\]

So, $a = -2$ and $b = 1$.

Example 2 – Solution

Because $g(x) \leq f(x)$ for all x in the interval $[-2, 1]$, the representative rectangle has an area of

\[
\Delta A = [f(x) - g(x)] \Delta x
\]

\[
= [(2 - x^2) - x] \Delta x
\]

and the area of the region is

\[
A = \int_{-2}^{1} [(2 - x^2) - x] \, dx = \left[-\frac{x^3}{3} - \frac{x^2}{2} + 2x \right]_{-2}^{1} = \frac{9}{2}
\]
Set up the definite integral that gives the area of the region.

\[y_1 = x^2 + 2x + 1 \]
\[y_2 = 2x + 5 \]

\[y_1 = (x - 1)^3 \]
\[y_2 = x - 1 \]
Sketch the graph bounded by the graphs of the algebraic functions and find the area of the region.

\[y = -x^3 + x, \quad y = x, \quad x = -1, \quad x = 1 \]

\[f(x) = -x^2 + 4x + 1, \quad g(x) = x + 1 \]
\[f(y) = y(2 - y), \quad g(y) = -y \]

\[f(y) = \frac{y}{\sqrt{16 - y^2}}, \quad g(y) = 0, \quad y = 3 \]