Use the properties of exponents to simplify the expressions.

\[
\left(\frac{1}{e} \right)^{-2} \\
\left(\frac{e^5}{e^2} \right)^{-1} \\
\left(e^7 \right)^3 \\
e^3 \left(e^6 \right)
\]
Example – Sketching Graphs of Exponential Functions

• Sketch the graphs of the functions

\[f(x) = 2^x, \quad g(x) = \left(\frac{1}{2}\right)^x = 2^{-x}, \quad \text{and} \quad h(x) = 3^x. \]

• To sketch the graphs of these functions by hand, you can complete a table of values, plot the corresponding points, and connect the points with smooth curves.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-3)</th>
<th>(-2)</th>
<th>(-1)</th>
<th>(0)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2^x)</td>
<td>(\frac{1}{8})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{2})</td>
<td>(1)</td>
<td>(2)</td>
<td>(4)</td>
<td>(8)</td>
<td>(16)</td>
</tr>
<tr>
<td>(2^{-x})</td>
<td>(8)</td>
<td>(4)</td>
<td>(2)</td>
<td>(1)</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{8})</td>
<td>(\frac{1}{16})</td>
</tr>
<tr>
<td>(3^x)</td>
<td>(\frac{1}{27})</td>
<td>(\frac{1}{9})</td>
<td>(\frac{1}{3})</td>
<td>(1)</td>
<td>(3)</td>
<td>(9)</td>
<td>(27)</td>
<td>(81)</td>
</tr>
</tbody>
</table>
The Number e

• In calculus, the natural (or convenient) choice for a base of an exponential number is the irrational number e, whose decimal approximation is

 \[e \approx 2.71828182846. \]

• This choice may seem anything but natural. However, the convenience of this particular base will become apparent as you continue in this course.

Example – *Investigating the Number e*

• Use a graphing utility to graph the function

 \[f(x) = (1 + x)^{1/x}. \]

• Describe the behavior of the function at values of x that are close to 0.

• Solution:

 One way to examine the values of $f(x)$ near 0 is to construct a table.

<table>
<thead>
<tr>
<th>x</th>
<th>-0.01</th>
<th>-0.001</th>
<th>-0.0001</th>
<th>0.0001</th>
<th>0.001</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1 + x)^{1/x}$</td>
<td>2.7320</td>
<td>2.7196</td>
<td>2.7184</td>
<td>2.7181</td>
<td>2.7169</td>
<td>2.7048</td>
</tr>
</tbody>
</table>
Example Solution

• From the table, it appears that the closer \(x \) gets to 0, the closer \((1 + x)^{1/x}\) gets to \(e \). You can confirm this by graphing the function \(f \), as shown in Figure 1.48.

![Graph of \(f(x) = (1 + x)^{1/x} \)](image)

Example Solution

• Try using a graphing calculator to obtain this graph. Then zoom in closer and closer to \(x = 0 \). Although \(f \) is not defined when \(x = 0 \), it is defined for \(x \)-values that are arbitrarily close to zero.

• By zooming in, you can see that the value of \(f(x) \) gets closer and closer to \(e \approx 2.71828182846 \) as \(x \) gets closer and closer to 0.
Example Solution

• Later, when you study limits, you will learn that this result can be written as

$$\lim_{x \to 0} (1 + x)^{1/x} = e$$

• which is read as “the limit of \((1 + x)^{1/x}\) as \(x\) approaches 0 is \(e\).”

The Natural Logarithmic Function

• Because the natural exponential function \(f(x) = e^x\) is one-to-one, it must have an inverse function. Its inverse is called the natural logarithmic

<table>
<thead>
<tr>
<th>DEFINITION OF THE NATURAL LOGARITHMIC FUNCTION</th>
</tr>
</thead>
</table>
| Let \(x\) be a positive real number. The natural logarithmic function, denoted by \(\ln x\), is defined as follows. (\(\ln x\) is read as “el en of \(x\)” or “the natural log of \(x\)”)
| \(\ln x = b \quad \text{if and only if} \quad e^b = x.\) |
The Natural Logarithmic Function

• This definition tells you that a logarithmic equation can be written in an equivalent exponential form, and vice versa.
• Here are some examples.

<table>
<thead>
<tr>
<th>Logarithmic Form</th>
<th>Exponential Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ln 1 = 0)</td>
<td>(e^0 = 1)</td>
</tr>
<tr>
<td>(\ln e = 1)</td>
<td>(e^1 = e)</td>
</tr>
<tr>
<td>(\ln e^{-1} = -1)</td>
<td>(e^{-1} = \frac{1}{e})</td>
</tr>
</tbody>
</table>

Properties of Logarithms

Let \(x, y, \) and \(z \) be real numbers such that \(x > 0 \) and \(y > 0 \)

1. \(\ln xy = \ln x + \ln y \)

2. \(\ln \frac{x}{y} = \ln x - \ln y \)

3. \(\ln x^z = z \ln x \)
Example 5 – *Expanding Logarithmic Expressions*

• **a.** \(\ln \frac{10}{9} = \ln 10 - \ln 9 \)
 Property 2

• **b.** \(\ln \sqrt{3x + 2} = \ln (3x + 2)^{1/2} \)
 Rewrite with rational exponent.
 \[= \frac{1}{2} \ln (3x + 2) \]
 Property 3

• **c.** \(\ln \frac{6x}{5} = \ln (6x) - \ln 5 \)
 Property 2
 \[= \ln 6 + \ln x - \ln 5 \]
 Property 1

Expanding Logarithmic Expressions
cont’d

• **d.** \(\ln \frac{(x^2 + 3)^2}{\sqrt[3]{x^2 + 1}} = \ln (x^2 + 3)^2 - \ln (\sqrt[3]{x^2 + 1}) \)
 \[= 2 \ln (x^2 + 3) - \left[\ln x + \ln (x^2 + 1)^{1/3} \right] \]
 \[= 2 \ln (x^2 + 3) - \ln x - (x^2 + 1)^{1/3} \]
 \[= 2 \ln (x^2 + 3) - \ln x - \frac{1}{3} \ln (x^2 + 1) \]
Evaluate the expression.

\[4^{1/2} \]

\[8^{2/3} \]

\[64^{-1/2} \]

\[\left(\frac{1}{4} \right)^3 \]

Solve for x.

\[4^x = 64 \]

\[5^{x+1} = 125 \]

\[\left(\frac{1}{5} \right)^{2x} = 625 \]

\[(x + 3)^{4/3} = 16 \]
Find the domain of the function.

\[f(x) = \frac{1}{2 - e^x} \]

Apply the inverse properties of \(\ln x \) and \(e^x \) to simplify the given expression.

\[\ln e^{2x-1} - 8 + e^{\ln x^3} \]
Use the properties of logarithms to expand the logarithmic expression.

\[\ln \sqrt{x^5} \]
\[\ln(xyz) \]
\[\ln \frac{1}{e} \]

Write the expression as the logarithm of a single quantity.

\[\frac{1}{3} \left[2 \ln(x + 3) + \ln x - \ln(x^2 - 1) \right] \]