3.5 Implicit and Explicit Functions

Up to this point, most functions have been expressed in **explicit form**. For example, in the equation

\[y = 3x^2 - 5 \]

the variable \(y \) is explicitly written as a function of \(x \). Some functions, however, are only **implied** by an equation.

For instance, the function \(y = 1/x \) is defined **implicitly** by the equation \(xy = 1 \).

Suppose you were asked to find \(dy/dx \) for this equation. You could begin by writing \(y \) explicitly as a function of \(x \) and then differentiating.

Implicit and Explicit Functions

<table>
<thead>
<tr>
<th>Implicit Form</th>
<th>Explicit Form</th>
<th>Derivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>(xy = 1)</td>
<td>(y = \frac{1}{x} = x^{-1})</td>
<td>(\frac{dy}{dx} = -x^{-2} = -\frac{1}{x^2})</td>
</tr>
</tbody>
</table>

This strategy works whenever you can solve for the function explicitly.

You cannot, however, use this procedure when you are unable to solve for \(y \) as a function of \(x \).

For instance, how would you find \(dy/dx \) for the equation \(x^2 - 2y^3 + 4y = 2 \), where it is very difficult to express \(y \) as a function of \(x \) explicitly? To do this, you can use **implicit differentiation**.
Implicit and Explicit Functions

To understand how to find \(\frac{dy}{dx} \) implicitly, you must realize that the differentiation is taking place with respect to \(x \).

This means that when you differentiate terms involving \(x \) alone, you can differentiate as usual.

However, when you differentiate terms involving \(y \), you must apply the Chain Rule, because you are assuming that \(y \) is defined implicitly as a differentiable function of \(x \).

Example 1 – Differentiating with Respect to \(x \)

a. \[\frac{d}{dx}[x^3] = 3x^2 \]

 Variables agree: use Simple Power Rule.

b. \[\frac{d}{dx}[y^3] = 3y^2 \frac{dy}{dx} \]

 Variables disagree: use Chain Rule.

c. \[\frac{d}{dx}[x + 3y] = 1 + 3 \frac{dy}{dx} \]

 Chain Rule: \[\frac{d}{dx}[3y] = 3y' \]
Example 1 – Differentiating with Respect to x

d. \(\frac{d}{dx}[xy^2] = x \frac{d}{dx}[y^2] + y^2 \frac{d}{dx}[x] \)
 \[= x \left(2y \frac{dy}{dx}\right) + y^2(1)\]
 \[= 2xy \frac{dy}{dx} + y^2\]

Product Rule
Chain Rule
Simplify.

Implicit Differentiation

GUIDELINES FOR IMPLICIT DIFFERENTIATION

1. Differentiate both sides of the equation with respect to \(x \).
2. Collect all terms involving \(\frac{dy}{dx} \) on the left side of the equation and move all other terms to the right side of the equation.
3. Factor \(\frac{dy}{dx} \) out of the left side of the equation.
4. Solve for \(\frac{dy}{dx} \) by dividing both sides of the equation by the left-hand factor that does not contain \(\frac{dy}{dx} \).

In Example 2, note that implicit differentiation can produce an expression for \(\frac{dy}{dx} \) that contains both \(x \) and \(y \).
Example 2 – Implicit Differentiation

Find \(\frac{dy}{dx} \) given that \(y^3 + y^2 - 5y - x^2 = -4 \).

Solution:

1. Differentiate both sides of the equation with respect to \(x \).

\[
\frac{d}{dx}[y^3 + y^2 - 5y - x^2] = \frac{d}{dx}[-4]
\]

\[
\frac{d}{dx}[y^3] + \frac{d}{dx}[y^2] - \frac{d}{dx}[5y] - \frac{d}{dx}[x^2] = \frac{d}{dx}[-4]
\]

\[
3y^2 \frac{dy}{dx} + 2y \frac{dy}{dx} - 5 \frac{dy}{dx} - 2x = 0
\]

Example 2 – Solution

cont’d

2. Collect the \(\frac{dy}{dx} \) terms on the left side of the equation.

\[
3y^2 \frac{dy}{dx} + 2y \frac{dy}{dx} - 5 \frac{dy}{dx} = 2x
\]

3. Factor \(\frac{dy}{dx} \) out of the left side of the equation.

\[
\frac{dy}{dx} (3y^2 + 2y - 5) = 2x
\]

4. Solve for \(\frac{dy}{dx} \) by dividing by \((3y^2 + 2y - 5) \).

\[
\frac{dy}{dx} = \frac{2x}{3y^2 + 2y - 5}
\]
Find dy/dx by implicit differentiation.

$$x^2 y + y^2 x = -2$$

$$(\sin \pi x + \cos \pi y)^2 = 2$$
Find dy/dx by implicit differentiation and evaluate the derivative at the given point.

\[y^3 - x^2 = 4 \quad (2, 2) \]

Use implicit differentiation to find an equation of the tangent line to the graph at the given point.

\[y^2 + \ln xy = 2, \quad (e, 1) \]
Find \(d^2 y / dx^2 \) implicitly in terms of \(x \) and \(y \).

\[
x^2 y - 4x = 5
\]