Convert the angle in degrees to radians. Express answer as a multiple of π.

1) 45°
2) 54°
3) −480°

Convert the angle in radians to degrees.

4) \(\frac{\pi}{3} \)
5) \(-\frac{\pi}{5} \)
6) \(\frac{9\pi}{4} \)
7) \(-\frac{35}{9}\pi \)

Convert the angle in degrees to radians. Round to two decimal places.

8) 194°
9) −196°

Convert the angle in radians to degrees. Round to two decimal places.

10) \(\frac{12\pi}{3} \) radians
11) −2.54 radians

Find the length of the arc on a circle of radius \(r \) intercepted by a central angle \(\theta \). Round answer to two decimal places.

16) \(r = 9 \) feet, \(\theta = 75° \)

Express the angular speed in radians per second.

17) 420 revolutions per second

The point P on the unit circle that corresponds to a real number \(t \) is given. Find the values of the indicated trigonometric function at \(t \).

18) \(\left[\frac{3}{8}, \sqrt{\frac{55}{8}} \right] \) Find sin \(t \).

Use the unit circle knowledge to find the value of the trigonometric function. Do not use a calculator.

19) sec \(\frac{\pi}{6} \)
20) cos \(\frac{\pi}{3} \)
21) tan \(\frac{7\pi}{6} \)
22) cot \(\frac{3\pi}{2} \)
23) sec \(\frac{\pi}{4} \)
24) sin \(\left(-\frac{\pi}{6} \right) \)
25) sin \(\left(-\frac{\pi}{3} \right) \)
26) cot \(\left(-\frac{\pi}{3} \right) \)
27) cot \(\left(-\frac{\pi}{6} \right) \)
28) \(\sin (-120^\circ) \)

29) \(\sec \left(-\frac{\pi}{6} \right) \)

30) \(\cos \left(\frac{5\pi}{4} \right) \)

31) \(\cos \left(\frac{5\pi}{4} \right) \)

32) \(\cos \left(-\frac{14\pi}{3} \right) \)

33) \(\cot \left(\frac{17\pi}{4} \right) \)

34) \(\cos \left(\frac{35\pi}{6} \right) \)

35) \(\tan 9\pi \)

36) \(\cos \pi \)

37) \(\sec \left(\frac{\pi}{2} \right) \)

38) \(\sin \left(-\frac{2\pi}{3} \right) \)

39) \(\tan \left(\frac{7\pi}{6} \right) \)

40) \(\tan \left(-\frac{7\pi}{4} \right) \)

41) \(\csc \left(\frac{5\pi}{3} \right) \)

42) \(\tan \left(-\frac{\pi}{2} \right) \)

43) \(\cot \left(-\frac{115\pi}{6} \right) \)

44) \(\sin 0.4 \)

45) \(\tan 3.9 \)

46) \(\sec 9 \)

47) \(\sec \frac{\pi}{10} \)

Use a calculator to find the value of the trigonometric function to four decimal places.

Two sides of a right triangle ABC (C is the right angle) are given. Find the indicated trigonometric function of the given angle. Give an exact answer with a rational denominator.

48) \[\text{Find } \sin \theta. \]

49) \[\text{Find } \csc \theta. \]

50) \[\text{Find } \cot \theta. \]

Find a cofunction with the same value as the given expression.

51) \(\sin 72^\circ \)

52) \(\tan 52^\circ \)
53) \(\csc \frac{\pi}{12} \)

Solve the problem.

54) A radio transmission tower is 250 feet tall. How long should a guy wire be if it is to be attached 10 feet from the top and is to make an angle of 22° with the ground? Give your answer to the nearest tenth of a foot.

A point on the terminal side of angle \(\theta \) is given. Find the exact value of the indicated trigonometric function of \(\theta \).

55) \((15, 20)\) Find \(\sin \theta \).

56) \((-5, 6)\) Find \(\tan \theta \).

57) \((-4, -3)\) Find \(\sec \theta \).

Find the exact value of the indicated trigonometric function of \(\theta \).

58) \(\cos \theta = \frac{8}{9}, \tan \theta < 0 \) Find \(\sin \theta \).

59) \(\tan \theta = -\frac{8}{15}, \ 90^\circ < \theta < 180^\circ \) Find \(\cos \theta \).

60) \(\cos \theta = \frac{15}{17}, \ \frac{3\pi}{2} < \theta < 2\pi \) Find \(\cot \theta \).

Find the reference angle for the given angle.

61) \(62^\circ \)

62) \(96^\circ \)

63) \(436^\circ \)

64) \(-229^\circ \)

65) \(\frac{3\pi}{4} \)

66) \(5.9 \)

67) \(\frac{29\pi}{3} \)

Determine the amplitude or period as requested.

68) Period of \(y = \sin 3x \)

69) Amplitude of \(y = -3 \sin x \)

70) Period of \(y = 5 \sin \left(3x - \frac{\pi}{2}\right)\)

Determine the phase shift of the function.

71) \(y = \frac{1}{4} \sin (4x + \pi) \)

72) \(y = 4 \sin (4x - \frac{\pi}{2}) \)

Graph the function.

73) \(y = 4 \sin (x + \frac{\pi}{3}) \)

74) \(y = -2 \sin (2\pi x - 2) \)
75) \(y = 2 \cos \left(x - \frac{\pi}{4} \right) \)

Use a vertical shift to graph the function.

76) \(y = -4 \cos \left(2x - \frac{\pi}{2} \right) + 2 \)
1) \(\frac{\pi}{4} \) radians

2) \(\frac{3\pi}{10} \) radians

3) \(-\frac{8\pi}{3}\) radians

4) 60°
5) -36°
6) 405°
7) -700°
8) 3.39 radians
9) -3.42 radians
10) 720°
11) -145.53°
12) -234+360 =
126°
13) \(\frac{5\pi}{2} - 2\pi = \frac{5\pi}{2} - \frac{4\pi}{2} = \frac{\pi}{2} \)
14) \(\frac{4\pi}{3} \)
15) \(\frac{13\pi}{10} \)
16) 11.78 feet
17) 840\pi radians per second
18) \(\frac{\sqrt{55}}{8} \)
19) \(\frac{2\sqrt{3}}{3} \)
20) \(\frac{1}{2} \)
21) \(\sqrt{3} \)
22) 0
23) \(\sqrt{2} \)
24) \(-\frac{1}{2} \)
25) \(-\frac{\sqrt{3}}{2} \)
26) \(-\frac{\sqrt{3}}{3} \)
27) \(-\sqrt{3} \)
28) \(-\frac{\sqrt{3}}{2} \)
29) \(\frac{2\sqrt{3}}{3} \)

30) \(-\frac{\sqrt{2}}{2} \)
31) \(-\frac{\sqrt{2}}{2} \)
32) \(-\frac{1}{2} \)
33) 1
34) \(\frac{\sqrt{3}}{2} \)
35) 0
36) -1
37) undefined
38) \(-\frac{\sqrt{3}}{2} \)
39) \(\frac{\sqrt{3}}{3} \)
40) 1
41) \(-\frac{2\sqrt{3}}{3} \)
42) undefined
43) \(\frac{\sqrt{3}}{3} \)
44) 0.3894
45) 0.9474
46) -1.0975
47) 1.0515
48) \(\sin \theta = \frac{2\sqrt{29}}{29} \)
49) \(\csc \theta = \frac{\sqrt{85}}{9} \)
50) \(\cot \theta = \frac{4}{5} \)
51) \(\sin 72^\circ = \cos(90^\circ - 72^\circ) = \cos 18^\circ \)
52) \(\cot 38^\circ \)
53) \(\sec \frac{5\pi}{12} \)
54) 640.7 feet
55) \(\frac{4}{5} \)
56) \(-\frac{6}{5} \)
57) \(-\frac{5}{4} \)
58) \(-\frac{\sqrt{17}}{9} \)
59) $-\frac{15}{17}$
60) $-\frac{15}{8}$
61) 62°
62) 84°
63) 76°
64) 49°
65) $\frac{\pi}{4}$
66) 0.38
67) $\frac{\pi}{3}$
68) $\frac{2\pi}{3}$
69) 3
70) $\frac{2\pi}{3}$
71) $\frac{\pi}{4}$ units to the left
72) $\frac{\pi}{8}$ units to the right
73)
74)
75)
76)