1.8 Inverse Functions

Objective 1: Verify inverse functions.

Definition of the Inverse of a Function

Let f and g be two functions such that

\[
 f(g(x)) = x \quad \text{for every } x \text{ in the domain of } g
\]

and

\[
 g(f(x)) = x \quad \text{for every } x \text{ in the domain of } f.
\]

The function g is the inverse of the function f and is denoted by f^{-1} (read “f-inverse”). Thus, $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$. The domain of f is equal to the range of f^{-1}, and vice versa.

The function f is a set of ordered pairs, (x,y), then the changes produced by f can be “undone” by reversing components of all the ordered pairs. The resulting relation (y,x), may or may not be a function. Inverse functions have a special “undoing” relationship.

The notation f^{-1} represents the inverse function of f. The -1 is not an exponent.

The notation f^{-1} does not mean $\frac{1}{f}$.

Relations, Functions and one-to-one Functions

One-to-one Functions are a subset of Functions. They are special functions where for every x, there is one y, and for every y, there is one x.

Reminder: The definition of function is, for every x there is only one y.

Inverse Functions are 1:1

Find $f(g(x))$ and $g(f(x))$ and determine whether each pair of functions f and g are inverses of each other.

$f(x) = 4x + 9$ and $g(x) = \frac{x - 9}{4}$
Objective 2: Find the inverse of a function.

Finding the Inverse of a Function
The equation for the inverse of a function \(f \) can be found as follows:
1. Replace \(f(x) \) with \(y \) in the equation for \(f(x) \).
2. Interchange \(x \) and \(y \).
3. Solve for \(y \). If this equation does not define \(y \) as a function of \(x \), the function \(f \) does not have an inverse function and this procedure ends. If this equation does define \(y \) as a function of \(x \), the function \(f \) has an inverse function.
4. If \(f \) has an inverse function, replace \(y \) in step 3 by \(f^{-1}(x) \). We can verify our result by showing that \(f(f^{-1}(x)) = x \) and \(f^{-1}(f(x)) = x \).

How to Find an Inverse Function

Find the inverse function of \(f(x) \).
\(f(x) = x^2 - 1, \ x \geq 0 \)
1. Replace \(f(x) \) with \(y \): \(y = x^2 - 1 \)
2. Interchange \(x \) and \(y \): \(x = y^2 - 1 \)
3. Solve for \(y \): \(x + 1 = y^2 \)
 \(\sqrt{x + 1} = y \)
4. Replace \(y \) with \(f^{-1}(x) \): \(f^{-1}(x) = \sqrt{x + 1} \)
Example

Find the inverse of $f(x)=7x-1$

Example

Find the inverse of $f(x)=x^3 + 4$
Example

Find the inverse of \(f(x) = \frac{3}{x} - 5 \)

Objective 3: Use the horizontal line test to determine if a function has an inverse function.

The Horizontal Line Test for Inverse Functions
A function \(f \) has an inverse that is a function, \(f^{-1} \), if there is no horizontal line that intersects the graph of the function \(f \) at more than one point.
b and c are not one-to-one functions because they don’t pass the horizontal line test.

Example

Graph the following function and tell whether it has an inverse function or not.

\[f(x) = \sqrt{x - 3} \]
Example

Graph the following function and tell whether it has an inverse function or not.

\[f(x) = |x - 1| \]

There is a relationship between the graph of a one-to-one function, \(f \), and its inverse \(f^{-1} \). Because inverse functions have ordered pairs with the coordinates interchanged, if the point \((a, b)\) is on the graph of \(f \) then the point \((b, a)\) is on the graph of \(f^{-1} \). The points \((a, b)\) and \((b, a)\) are symmetric with respect to the line \(y=x \). Thus graph of \(f^{-1} \) is a reflection of the graph of \(f \) about the line \(y=x \).
A function and its inverse graphed on the same axis.

Example

If this function has an inverse function, then graph it's inverse on the same graph.

\[f(x) = \sqrt{x - 3} \]
Example
If this function has an inverse function, then graph it’s inverse on the same graph. $f(x) = x^3$

Objective 5: Find the inverse of a function and graph both functions on the same axes.
 a. Find an equation for $f^{-1}(x)$.
 b. Graph f and f^{-1} in the same rectangular coordinate system.
 c. Use interval notation to give the domain and the range of f and f^{-1}.

$f(x) = x^2 - 1, \quad x \leq 0$
Use a graphing calculator to graph the function. Use the graph to determine whether the function has an inverse that is a function (that is whether the function is one-to-one).

\[f(x) = x^2 - 1 \]

\[f(x) = (x - 1)^3 \]