8.5 POWER SERIES

A power series is a series of the form

\[\sum_{n=1}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots \]

where \(x \) is a variable and the \(c_n \)'s are constants called the coefficients of the series.

DEFINITION: POWER SERIES

A power series has the general form

\[\sum_{n=0}^{\infty} c_n (x - a)^n = c_0 + c_1(x - a) + c_2(x - a)^2 + \cdots \]

where \(a \) and \(c_n \) are real numbers, and \(x \) is a variable.

The \(c_n \)'s are the coefficients of the series and \(a \) is the center of the power series.

The set of \(x \) values for which the series converges is the interval of convergence. The radius of convergence of the series, denoted \(R \), is the distance from the center of the series to the boundary of the interval of convergence.
Three possibilities for power series $\sum_{n=0}^{\infty} c_n (x - a)^n$

i) The series converges only when $x = a$. (in this case, $R = 0$).

ii) The series converges for all x. (in this case, $R = \infty$)

iii) There is a positive number R such that the series converges if $|x - a| < R$ and diverges when $|x - a| > R$.

R is the radius of convergence of the power series.

Find the interval and radius of convergence for each power series. Sketch the interval and radius on a number line.

a) $\sum_{n=0}^{\infty} \frac{x^n}{n!}$

Ans. Inter: $(-\infty, \infty)$; $R = \infty$

center of power series

b) $\sum_{n=0}^{\infty} \frac{(-1)^n (x - 2)^n}{4^n}$

Ans. Inter: (-2, 6); $R = 4$

Center of power series
c) \[\sum_{n=1}^{\infty} n!x^n \]

Ans. By the Ratio Test, this series is divergent. The only way for \(r < 1 \), and therefore convergent, is to take \(r = 0 \). In this case the power series has a value of 0. The interval of radius and the radius is the single point \(x = 0 \).

\[0 \]

Interval of convergence \([0] \)
Radius of convergence \(R = 0 \)

\[\sum_{n=1}^{\infty} \frac{(x-2)^{n+1}}{\sqrt{n}} \]

Ans. Int of convergence: \([1, 3) \)
Radius of convergence \(R = 1 \)